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Ah&r&-We describe experiments conducted with a fluid of high Prandtl number contained in a differen- 
tially heated, slightly inclined box of large aspect ratio (width/depth). When the bottom plate is heated and 
the top plate is cooled convective rolls are superimposed on the basic unicellular Hadley circulation. The 
structure of this Hadley circulation is calculated in the limit of small inclination angle a, compared with 
experiment, and shown not to interact with the convective instabilities which occur at a Rayleigh number 
Ra > 1708/cos a. These convective instabilities take the form of straight longitudinal rolls orientad upslope, 
so that the complete interior thermal structure of these disturbances is easily measured. Of particular 

interest is the measurement of mean density gradient reversals for Ra 2 4RaC,,. 
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aspect ratio L/D; 
inclination angle; 
height of slot; 
coefficient of thermal expansion; 
gravitational acceleration; 
thermal djffusivity; 
width and depth of box; 
Nusselt number; 
streamfunction for the Hadley circula- 
tion ; 
streamfunction for the convective 
rolls; 
Prandtl number = V/K; 
Rayleigh number; 
critical Rayleigh number for onset of 
convective instability; 
tem~rature; 
upslope velocity; 
cross-slope velocity; 
kinematic viscosity; 
cross-stream velocity: 
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X, upslope coordinate; 

Y, cross-sfope coordinate; 

2, cross-stream coordinate. 

1. INTRODUCTION 

WE WISH to consider the flow regimes in the 
2 dimensional slot shown in Fig. 1. For large 
Prandtl numbers the governing Boussinesq 
equations can be put into the form 

V2u - Vp + TcoscrL- Tsin& 

v.li =o 

-Rau .VT = V2T 

= 0 (1-l) 

U-2) 

(1.3) 

with Ra = Rayleigh number = gyATD3jrcv. All 
distances have the depth scale D, temperature 
- AT, and velocity - gy ATD’/v. In the above g 
is the gravitational acceleration, K the thermal 
diffusivity, v the kinematic viscosity, y the 
coefficient of thermal expansion, and LX the 
tilt angle ( 4 1). The boundary conditions are 

u=Oonz=&$, 
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VT.A=Oonx=y= -t&, (1.4) 

and 
T = -k$ on z = +$, 

where L is the length = width of the box. 

FIG. 1. Geometry and coordinates. The extent of our 
experimental box in the y direction was L. 

2. THE MEAN CIRCULATION 

We shall be considering two kinds of flows. 
A mean steady circulation (MC) which is 
essentially y independent, and thermal convec- 
tive instabilities (TC) which are essentially x 
independent. Now the temperature fluctuations 
of TC will be totally unaffected by MC if 
amyax = o.* When convective rolls with 
axes pointed upslope form, there will then be no 
interaction terms in thermal equation (1.3) 
between MC and TC. There is an induced 
upslope velocity due to the second buoyancy 
term in (1.1) but this will also be x-independent 
if aMC/ax = 0 and therefore will not couple 
into the equations governing TC. The purpose 
of this section is then to find conditions for 
which 

ww o 

_ = . (2.1) ox Ix-o 
The problem clearly involves the aspect ratio 

A =;. (2.2) 

* Throughout we are considering motions away from 
the frictional influence of the side walls. Thus for MC we 
consider a/ay = 0 and consider that TC is not modified 
by the sidewalls. For our experimental aspect ratio L/D v 40 
this is certainly alright provided we do not make measure- 
ments within a few depths of the sides. 

Now if the channel is truly infinite in x, we 
immediately find an exact solution for MC 
(subscript m), 

% ’ 
z3 z 

= sm a z- - 24 ( > (2.3) 

and 

T, = z (2.4) 

which is clearly x-independent. We wish then 
to find out how large A must be to insure 
that the flow resembles (2.3) and (2.4). 

We suppose that MC is independent of y. 
Then we introduce a streamfunction q such 
that 

w=q X 
and 

u = -‘I,. 

Since cx is to be very small we expand 

T,(x, z) = T,,, + crT,, + . . . 

and 

tl(x, z) = ?e + xr,r + . . . 

Then at O(0) 

V4rl,0 + Lx = 0 

- RaJ(?*,Y T,,,) = V’T,,,. 

Subject to the boundary conditions we find 
that we must have 

T,, = z 

rl 0. m0 
s 

At O(x) the equations are simply 

V4r/,, + Tmlx = -1 

and 

(2.5) 

V’T,, + Raqmlx = 0, 

which must be solved subject to 

(2.6) 

? ml =rl mlr = Tm, = 0 on z = +$, 

tl ml 
=yj = 

mlx 
T 
mix 

=0 on x=++. 
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Note that for Ra > 0 (unstable basic stratifica- 
tion) boundary layer solutions near x = f A/2 
are not possible. For Ra -C 0 it would appear 
possibfe to construct buoyancy layers near 
x = + A/2 for large Ra, but this is misleading 
because temperature actually diffuses beyond 
the buoyancy layer thickness. 

A numerical solution of (2.5) and (2.6) was 
found by means of the Galerkin method. Up 
to 25 trial functions in x and up to 10 in z were 
used to construct q and T. The stream function 
and temperature deviation are shown for 
selected cases in Fig. 2. Note that for the un- 

stable cases (Ra > 0) the streamlines are parallel 
to the top and bottom boundaries throughout 
most of the channel, and nonzero T,, values 
occur only near the ends if A = 10. 

If Ra > 0 and A 5 5 or if Ra < 0 the circula- 
tion near x = 0 is definitely affected by the end 
walls. In a short box with Ra > 0 the release 
of potential energy near the ends accelerates 
the flow beyond its normal (equation (2.3)) 
magnitude. If Ra < 0, the basic stability in- 
hibits vertical velocities and retards the circula- 
tion. The vertical velocities at the channel ends 
cause temperature variations which diffuse into 

(dl 

(bl 

FIG. 2. Streamlines (upper) and isotherms (lower) for the corrections. In (a) A = 10, Ra = 1700, in (b) A = 3, Ra = 1700, 
in(c)A=3,Ra= -103,andin(d)A=3,Ra= -5x 106. 
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the interior. Thus a characteristic of the solu- 
tions for Ra < 0 is the development of an 
interior temperature distribution which is ap- 
proximately linear with x at z = 0. Figures 3 
and 4 show the development of these gradients 
along with some data taken by traversing a 
fine thermocouple probe through a high Pr 
silicon oil at y = z = 0. Figure 5 shows how 
the temperature Tm, varies with z near the ends. 
In spite of the fact that the perspex sidewalls 
are not perfect insulators, the agreement be- 
tween this simple theory and experiment is 
rather good. 
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FIG. 3. Theoretical horizontal temperature profiles at z = 0 
for the values of (A-‘, Ra) shown. 

In conclusion, we have shown that if A 2 10 
the interior for Ra > 0 is identical to that 
given for infinite plates in (2.3) and (2.4). In 
particular I],,,~~ - Tmlx - 0 so no interaction 
with the upslope rolls to be described in the 
next section will occur. If Ra < 0 strong 
blocking affects the interior flows and the 
velocity and temperature fields are significantly 
modified from (2.3) and (2.4). Linear stability 
analyses of these small c1 flows based on (2.3) and 
(2.4) (Liang and Acrivos [7], Hart [4], Birikh 
et al. [l]) should be applied with caution if 
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FIG. 4. Horizontal temperature profiles (solid) compared 
with experiment. A = 5. 
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FIG. 5. Comparison of theoretical vertical temperature 
distributions (solid) with experiment at x/L = 0.47 and at 
x = 0. A = 5 and scale factors for the plots are shown in 

parenthesis. 

Ra>OandAS5orifRa<Oand -ARak 
2000. Using (2.6) and applying the boundary 
conditions it is easily seen that the mean 
circulation Nusselt number is 

Nu = 1 + qc+. 
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Symmetry arguments in fact require that Nu 
be a function of even powers of a only. 

3. UNSTABLE FLOWS AND THE STRUCTURE OF 
2-DIMENSIONAL THERMAL CONVECTION 

If Ra is greater than 1708/cosa we expect 
thermal instabilities to occur. Previous stability 
theories based on (2.3) and (2.4) have shown 
that in situations like this one expects upslope 
rolls to occur (Liang and Acrivos [7], Kurtweg 
[6], Hart [4]). Thus, using the results of the 
previous section with A - 40 we can take 
T = Tm, + T’(y, z). If we now construct a 
convective roll stream function $ (where w = $, 
and v = -$,), we find 

V”$ + T; = 0 (3-I) 

- RaJ(t,b, T’) = V2T’ + RuI,$ (3.2) 

Subject to boundary conditions (1.4) and neg- 
lecting the effects of the sidewalls on observa- 
tions made in the center of our A .- 40 apparatus 

OL 
Y 

FIG. 6. Sample data on the temperature field at z = 0 for 
the values of Ra shown. 

it is seen that (3.1) and (3.2) are the equations 
for 2-dimensional thermal convection of infinite 
Prandtl number which have been studied 
numerically by a number of authors. 

The apparatus used in the present experiments 
takes advantage of the particular orientation 
of the convection. A square convection tank 
with i in. thick, precision ground aluminum 
boundaries at z = +i and sidewalls is elevated 
at x = + A/2 so that the fluid layer is tipped up 
2” from horizontal. A & in. gap is cut along 
x = A/6 in the top plate which conducts an 

01 
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FIG. 7. Horizontally averaged temperature distributions (the 
average was taken over one roll). 

L-shaped ON)3 in. thermocouple probe, ex- 
tending 2 cm downslope from the crack, into 
the working fluid. An automated drive positions 
the probe between z = -f and z = 0.4 and 
y = +3A/8. The working fluid was 100 cs sili- 
cone oil (Pr - 900). AT was slowly increased 
over a period of 7 weeks, with measurements 
being made every few days. In this manner 
about 8 sets of data on T’(y, z) were obtained 
for several Rayleigh numbers. Figure 6 shows 
the results for some typical cases. One can 
clearly see the development of higher harmonics 
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in the temperature field as Ra increases. The ACKNOWLEDGEMENT 
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NOTE SUR LA STRUCTURE DE LA CONVECTION THERMIQUE DANS UNE FENTE 
LEGEREMENT INCLINEE 

RCsumC-On decrit des experiences men&es sur un fluide a grand nombre de Prandtl renferme dans une 
boite ltgtrement inclinte, differentiellement chauffee et a grand rapport de forme (largeur/profondeur). 
Quand la plaque inferieure est chauffee et la plaque suptrieure refroidie, des rouleaux de convection sont 
superposes a la circulation fondamentale unicellulaire de Hadley. La structure de cette circulation de 
Hadley est calculee dans la limite dun angle d’inclinaison a petit, cornpat& ii l’exptrience et on montre 
qu’elle n’agit pas sur les instabilitb de convection qui apparaissent pour un nombre de Rayleigh R0 > 
1708/cos a. Ces instabilitb de convection prennent la forme de rouleaux longitudinaux droits orient& 
vers le haut de la pente si bien que la structure thermique interieure complete de ces perturbations est 
facilement mesuree. La mesure des inversions du gradient de densite moyen pour Ra,>_4 Rocr,, est d’un 

inter& particulier. 

EIN BEITRAG ZUR STRUKTUR DER THERMISCHEN KONVEKTION IN 
EINEM SCHWACH GENEIGTEN SPALT 

Zussmmeofassung-Es werden Versuche beschrieben mit einem Fluid mit hoher Prandtl-Zahl, das sich 
in einem vednderlich beheizten, leicht geneigten Behalter mit einem grossen Hiihen-Breiten-Verhlltnis 
befindet. Wenn die Bodenplatte beheizt und die Deckplatte gekiihlt wird, iiberlagem sich Konvektions- 
walzen der ursprtinglich einzelligen Hadley-Zirkulation. Die Struktur dieser Hadley-Zirkulation wird 
im Bereich kleiner Neigungswinkel a berechnet und mit dem Experiment verglichen. Dabei zeigt sich, dass 
sie nicht mit den konvektiven Instabilitiiten zusammenwirkt, die bei Rayleigh-Zahlen Ra > 1708/cos a 
auftreten. Diese konvektiven Instabilitlten haben die Form gerader, aufwlrtsgerichteter Langswalzen, 
so dass der gesamte innere thermische Anfbau dieser Stijrungen leicht gemessen werden kann. Von 
besonderem Interesse ist die Messung des Urns&lags des mittleren Dichtegradienten fur Ra > 4 Rakrit,. 
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0 CTPYZCTYPE TEHJIOBOfl ICOHBEIC~kill B uEJII4 C HEI;OJILII.II/IM 
HAKJIOHOM 

AHaOTFsq~~-OnacbBa~TC~ OI3bITbI II0 KO~IB~K~~~ Ii ~~~KOcT~ C 6O~b~~~~ W4CJlOM &,aHaTJIH, 

3a~O~H~~~e~ ~~~~@peHi~~a~bHO HaI’peTyIO CJIel’Ka HaK~O~eHH~~ IIOJIOCTb C 60~6~~~ 

OTHOUIeHIleM IISipAHbI K BbICOTe. npH HarpeBe HIGKHeti II OXJIaWfieHAIl BepXHf.?& I,JIaCTl4H$J 

KOHBeHTHBHbIe BaJIbI HaKJIaJ+IBaIOTCR Ha OCHOBHYH) O@IORYeMCTJ’IO L(I4pKyJIFfI~RIO Xe&Wf. 

CTpyHTypa OCHOBHOfi qLlpKyJIR~lu5 &?finu. CTpJ’KTJ’pa OCHOBHOti IfHpK)‘ZTRqHH &?&TIlz 

PaCCYHTblBaE!TCA B IIpeAeJIe MaJlOrO II0 CpaBHeHIUO C 3KCnepMMeHTOM JWJUI HaKJIOHa cc. 

nOKa33H0, 4TO 3T3 CTpJ’KTJ’pa He B3allMOAeiiCTBj’eT C KOHTWtiTABHbIMH HeYCTOkWBOCTRMM, 

KOTOpbIe BORHklKafOT npll 3HaqeHklRX WlCJIa PeJIen R, > 1708/cos oz. KOHBeKTSEBHaFI 

HeYCTO~q~BO~Tb IIP~BO~~T K nO~B~eH~~ IipRMbiX IIp~~O~ibHbIX BaJIOB, ~aCI~O~3ra~~~Xc~ 

BBepX II0 HaUJlOHy, II03TOM) 1,13MepeH~~e BI~yTpe~iHe~ TNIJlOROii CTpyKT~pbr 3TMX BO3~ly~eH~~ 

He npk?~CTaBJIEeT 6OJIbtIIHX Tpy;IHOCTet?. oCO6bIti HHTepW npeacTammeT i%aMepemte mhre- 

HeHsti HaIIpaBJIeHHR CpeAHeI’O I’paJllleHTa IIJIOTHOCTH RJIH R, 2 4R, KPMT. 


